
4810-1183: Approximation and Online Algorithms with Applications 

Lecture Note 3: Approximation Algorithm for Knapsack Problem 

Problem Definition 

Suppose that you are in an all-you-can-eat strawberry farm, where you can have an unlimited amount 

of strawberry. Such type of farms are quite common in Japan, but, recently, many customers have a bad 

habit leaving a lot of remaining strawberry. Because of that, the association of all-you-can-eat 

strawberry farms issues a rule to prohibit leaving a partly-eaten strawberry. When you decide to eat a 

strawberry, you have to each a whole of it.  

We have the following optimization model, because we want to eat the maximum amount of 

strawberry. 

Input:   Positive integer 𝑛 (number of strawberries) 

   Positive real numbers 𝑤1, … , 𝑤𝑛 (weight of each strawberry) 

   Positive real number 𝑊 (maximum amount that we can eat strawberry) 

   Assumption: 𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝑛 

Output:   Set 𝑆 ⊆ {1, … , 𝑛} (set of strawberry we eat) 

Constraint:  ∑ 𝑤𝑖𝑖∈𝑆 ≤ 𝑊 (the weight sum of strawberry we eat is no more than 𝑊.) 

Objective Function: Maximize ∑ 𝑤𝑖𝑖∈𝑆  (maximize the amount of strawberry we eat.) 

For example, when 𝑛 = 5, 𝑤1 = 2, 𝑤2 = 5, 𝑤3 = 5, 𝑤4 = 6, 𝑤5 = 9 , 𝑊 = 10 , we should eat 

strawberry 2 and 3 to gain the maximum eating amount 𝑤2 + 𝑤3 = 10 = 𝑊. We attain the best output 

when 𝑆 = {2,3}.  

Corresponding to any particular output, the objective function gives us a value which we call 

“objective value”. For example, the objective value of 𝑆 = {1,2} is 𝑤1 + 𝑤2 = 7. The best objective 

value we can get from a particular input is called “optimal value”. We look for outputs with the objective 

value equal to the optimal value, and we will call those outputs as “optimal solutions”. During this 

course, we will sometimes denote the optimal value by 𝑂𝑃𝑇, and sometimes denote the optimal solution 

by 𝑆∗. 

 The above problem is the simplified version of a problem called knapsack. The problem is 

known to be NP-hard even for the simplified version.  

Algorithm 

The following algorithm is for the simplified knapsack problem: 

1: 𝑆 ← ∅ 

2: For 𝑗 =  1 to 𝑛 

3:  If ∑ 𝑤𝑖𝑖∈𝑆 + 𝑤𝑗 ≤ 𝑊: 

4:   𝑆 ← 𝑆 ∪ {𝑗} 
5:  Else: 

6:   if 𝑤𝑗 ≥ ∑ 𝑤𝑖𝑖∈𝑆 : 

7:    𝑆 ← {𝑗} 
8:   break 

The algorithm is mostly greedy algorithm. From the smallest to the heaviest, we pick 

strawberries to a bucket until the weight sum is more than we can eat. As, at the last step, we have more 

than we can eat in the bucket, we will remove some strawberry. We will remove the last strawberry 



when the weight of the last is smaller than that of the others combined. Otherwise, we will remove all 

but the last strawberry. 

Recall the example in the previous section. We will choose strawberry 1, 2, and 3 into our 

bucket. After we have strawberry 3, the weight sum (𝑤1 + 𝑤2 + 𝑤3 = 12) is more than 𝑊 = 10. We 

have to choose between removing strawberry 3 or removing strawberry 1, 2. We will be able to eat 

more if we choose to remove strawberry 3, so we remain strawberry 1, 2 in our bucket. The output of 

the algorithm is 𝑆 = {1,2}, and the objective value of the input is 7. 

In this course, we will denote an input of an algorithm by 𝑆′, and denote its objective value by 

𝑆𝑂𝐿. 𝑆′ is fairly nice, but it is not one of the optimal solutions as 𝑆𝑂𝐿 < 𝑂𝑃𝑇. However, we can prove 

the following theorem. 

Theorem 1: For any input, 𝑆𝑂𝐿 ≥ 0.5 ⋅ 𝑂𝑃𝑇. 

Proof:  It is straightforward to show that 𝑂𝑃𝑇 ≤ 𝑊. We cannot eat more than 𝑊 even in the optimal 

solution, as 𝑊 is our maximum capacity. 

 In the algorithm, we will pick the strawberries until the weight sum is more than 𝑊. We know 

that 

Weight sum of other strawberries + weight of the last strawberry ≥ 𝑊.  

By the inequality, we know that either “weight sum of other strawberries” or “weight of the last 

strawberry” is more than 0.5 ⋅ 𝑊. If both of them are smaller than 0.5 ⋅ 𝑊, the sum of them will not be 

more than 𝑊. Because of that, if we take the larger of the two, we will have the remaining weight larger 

than 0.5 ⋅ 𝑊. We have 𝑆𝑂𝐿 ≥ 0.5 ⋅ 𝑊 ≥ 0.5 ⋅ 𝑂𝑃𝑇.                                                                              

Approximation Algorithm 

Suppose that 𝛼  is a positive real number less than 1. We will say that an algorithm is “an 𝛼 -

approximation algorithm” for a particular problem, if, for all inputs, we have 

𝑆𝑂𝐿 ≥ 𝛼 ⋅ 𝑂𝑃𝑇. 

When we want to find an output that maximize a value, 𝑂𝑃𝑇 is the maximum objective value we can 

have from a particular input. Clearly, 𝑆𝑂𝐿, which is an arbitrary object value, cannot be larger than 

𝑂𝑃𝑇. If we can solve the problem, we will have 𝑆𝑂𝐿 = 𝑂𝑃𝑇 for all inputs. However, that is not possible 

when the problem is NP-hard. We unfortunately have 𝑆𝑂𝐿 < 𝑂𝑃𝑇  for some input. Still, we can 

theoretically guarantee that 𝑆𝑂𝐿 is always larger than 50% of 𝑂𝑃𝑇 when 𝛼 = 0.5. 

 The guarantee can infer that, when we have an input with large optimal values, we are very 

likely to have a large objective value from our algorithm. You might wonder why we have to care 

proving the inequality in the previous paragraph. The reason is, when you propose a method and you 

have only experiment results to support that the method is good, people cannot be sure if the results will 

be also good for their dataset or situations. They might not want to take risks implementing your 

methods, and your work might not be recognized as it should be. Because, with theories, people can 

easily know strong points and limitations of your methods, we do invite you to try having some 

guarantee for any of your proposals.  

 Approxability is one of the most common guarantee for an NP-hard problem [1]. We call 𝛼 an 

“approximation ratio” of our algorithm.  

  



Knapsack Problem 

Previously, we want to maximize the strawberry weight we take. That is not something you usually 

want to maximize in practice. Some strawberries might be more delicious than others, and we might 

want to eat them than just maximize the weight sum. Let suppose that we know our “happiness” from 

eating each strawberry in advance. We may formalize the problem into the following optimization 

model: 

Input:  Positive integer 𝑛 (number of strawberries)   

 Positive real numbers 𝑤1, … , 𝑤𝑛 (weight of each strawberry) 

 Positive real number 𝑊 (maximum amount that we can eat strawberry) 

             Positive real number 𝒉𝟏, … , 𝒉𝒏 (happiness from eating each strawberry) 

 Assumption: 
𝒉𝟏

𝒘𝟏
≥

𝒉𝟐

𝒘𝟐
≥ ⋯ ≥

𝒉𝒏

𝒘𝒏
 

Output:   Set 𝑆 ⊆ {1, … , 𝑛} (set of strawberry we eat) 

Constraint:  ∑ 𝑤𝑖𝑖∈𝑆 ≤ 𝑊 (the weight sum of strawberry we eat is no more than 𝑊.) 

Objective Function: Maximize ∑ 𝒉𝒊𝒊∈𝑺   

                                       (maximize the happiness from the strawberries we eat.) 

 The differences from the simplified version previously discussed are marked in bold italic. 

Instead of assuming that a smaller strawberry will come before a larger one, we sort the strawberries by 

the happiness gained per weight consumed. It is straightforward to show that the knapsack problem is 

NP-hard based on the fact that the simplified version is NP-hard. 

 We have the following algorithm for the knapsack problem. 

1: 𝑆 ← ∅ 

2: For 𝑗 =  1 to 𝑛 

3:  If ∑ 𝑤𝑖𝑖∈𝑆 + 𝑤𝑗 ≤ 𝑊: 

4:   𝑆 ← 𝑆 ∪ {𝑗} 
5:  Else: 

6:   if 𝒉𝒋 ≥ ∑ 𝒉𝒊𝒊∈𝑺 : 

7:    𝑆 ← {𝑗} 
8:   break 

The only difference from the previous algorithm in at Line 6. Previously, we chose to remove the last 

strawberry or the others based on the strawberries’ weight. Now, we choose based on the strawberries’ 

happiness. We will choose to remove the last strawberry if the happiness sum of the others are larger, 

and we will choose to remove the others if the happiness of the last strawberry is larger. 

 We can prove that the algorithm is 0.5-approximation algorithm, which mean that, for any 

particular input, the happiness we have from the algorithm is no less than 50% of the optimal. We will 

skip the proof in this course. 

Bloom Filters 

We will now move to an application on distributed computing. Consider the situation that we have a 

cache for a very dynamic network. There is a large number of data contained in the cache, and there are 

a very large number of inquiries if a particular data is there. We need a data structure that can answer 

to those inquiries in a few nanoseconds. If we use a sequential data structure like linked list, we might 

have to check all data in the worst case. That will take us too much searching time. 

  



 Suppose that all the possible data can be denoted by a positive integer less than 1080. (The 

integer can be conversed from a 256-bit string, which represent the short description of each data.) We 

can have an array of booleans a with length 1080. At the beginning, we set all a[i] to false. When we 

add an element i to the cache, we set a[i] to true. If there is an inquiry if i’ is in the cache, we can 

immediately return a[i’].  

 The method mentioned in the previous paragraph is very efficient. We can immediately update 

the array a, and the inquiry is answered almost immediately. However, it consumes a large amount of 

memory. We need 1080 bits for the data structure, and we are very unlikely to have to that large memory. 

 We can use hash functions to help us reduce the memory consumption. Suppose that the array 

size is 𝑚, which is much smaller 1080. When we enter a particular information 𝑖 to our cache, we will 

use the hash function 𝑓 to map 𝑖 to a random integer between 0 to 𝑚 − 1. Then, we will set a[f(i)] 

to true. When we have an inquiry if 𝑖′ is in the cache, we will return a[f(i’)]. 

 We assume that, for every information 𝑖, 𝑓(𝑖) equals any integer between 0 to 𝑚 − 1 with 

probability 1/𝑚. Because of that, there will be about 1080/𝑚  of information such that the hash of the 

information equals a particular number 𝑗. When a[f(i)]=false, we will be sure that we have not 𝑖 

in the cache. If 𝑖 is put to the cache,  a[f(i)]should have been set to true. On the other hand, if 

a[f(i)]=true, things might be more difficult. a[f(i)] might have been set to true because 𝑖′ is 

entered to the cache, or it might be because of other 1080/𝑚  information 𝑖′ that have 𝑓(𝑖) = 𝑓(𝑖′). 

 Inspired by machine learning, we call the situation in the previous paragraph as false positive. 

Let us try to understand why the false positive is not good for a web cache system. In the system, users 

will search for a content with a particular URL in a cache. We usually have 2 layers of computations in 

the cache. The first layer will have a short description of a website, and answer if we have that website 

in the cache. Then, if there is, we will move to the second layer. We will search for the full web content 

and return the whole web content to users. We aim to design an algorithm for the first layer, which is 

called as “filter” here. When we frequently have false positive at the filter, we frequently have to move 

to the calculation at the second layer, which is much heavier. Thus, we do not want to have a lot of false 

positive, as it will decrease the efficiency of the cache system. 

 Let us try to calculate the probability of having a false positive. We will calculate a probability 

that the filter will return true, when we search for an information 𝑖 that is not in the cache. Suppose that 

there are 𝑛 different information in the cache, denoted by 𝑖1
′ , … , 𝑖𝑛

′ . We will have a[f(i)] = true 

if and only if, for some 𝑘, we have 𝑓(𝑖) = 𝑓(𝑖𝑘
′ ). By contrapositive, we will have a[f(i)] = false 

if and only if, for all 𝑘, we have 𝑓(𝑖) ≠ 𝑓(𝑖𝑘
′ ). Because the hash function 𝑓 gives us a uniform random 

number, the probability that 𝑓(𝑖𝑘
′ ) equals to a particular value is 

1

𝑚
. 𝑓(𝑖𝑘

′ ) = 𝑓(𝑖) with probability 
1

𝑚
. 

Thus, for a particular 𝑘, 𝑓(𝑖𝑘
′ ) ≠ 𝑓(𝑖) with probability 1 −

1

𝑚
. We can consider the event when 𝑓(𝑖𝑘

′ ) ≠

𝑓(𝑖) for each 𝑘 as independent events. Because there is 𝑛 possible values for 𝑘, there are 𝑛 events with 

the same probability 1 −
1

𝑚
. The probability of having all events occurred is (1 −

1

𝑚
)

𝑛
. By that, the 

probability of having a[f(i)] = false is (1 −
1

𝑚
)

𝑛
. The probability of having a[f(i)] = 

true, false positive, is 1 − (1 −
1

𝑚
)

𝑛
. 

  



 The probability of having false positive, which is a bad situation leading to a large 

computational cost, in the previous paragraph is usually very close to 1. It is very important to decrease 

that probability. There is a technique that help decreasing the probability called “bloom filter” [2]. 

Previously, we have just one hash function. Let us use 𝑝 totally independent hash functions 𝑓1, … , 𝑓𝑝. 

When we have a new information 𝑖 in the case, we will set all a[f1(i)], …, a[fp(i)] to 

true .When there is an inquiry if 𝑖 is in the cache, we will answer that 𝑖 is in the cache if and only if 

a[f1(i)], …, a[fp(i)] are all true. We will answer that 𝑖 is not in the cache otherwise. 

 We will have a false positive, only if all 𝑝 bits are not correct. When 𝑝 becomes larger, having 

all 𝑝 bits incorrect are less likely to happen. On the other hand, when 𝑝 becomes larger, we have to 

assign more bits to 1. For example, if 𝑝 ≫ 𝑚, we will have all elements of the array becomes 1 by just 

one information. We have false positives from any queries after that. It is a trade-off between how much 

we can confirm and how many true bits in the array. The main goal of this section is to calculate what 

is the best value of 𝑝.  

 Again, we will suppose that an information 𝑖 is not in the cache. We want to calculate the 

probability that our filter will report that 𝑖 is in the cache. Let us consider the probability that a particular 

a[j] is set to true.  Because we have 𝑛 different information in the cache and, when we have new 

information, we will assign true to 𝑝 places, the event of assigning true happens for 𝑛 ⋅ 𝑝 times. Each 

event will not hit a[j] with probability (1 −
1

𝑚
), so the probability of having all 𝑛 ⋅ 𝑝 events not 

hitting  a[j] is (1 −
1

𝑚
)

𝑛𝑝
. For all 𝑗, a[j]=false with probability (1 −

1

𝑚
)

𝑛𝑝
, so a[j]=true 

with probability 1 − (1 −
1

𝑚
)

𝑛𝑝
. For each 𝑞 , we have a[fq(i)]=true with probability 1 −

(1 −
1

𝑚
)

𝑛𝑝
, and a[f1(i)], …, a[fp(i)] are all true with probability (1 − (1 −

1

𝑚
)

𝑛𝑝
)

𝑝

. The 

probability of having false positive is (1 − (1 −
1

𝑚
)

𝑛𝑝
)

𝑝

. 

 We can use calculus to find the best value of 𝑝, and it turns out that we will minimize the 

probability of having false positive when 𝑝 =
𝑚

𝑛
⋅ ln 2. 

Adaptive Bloom Filter 

Let us now consider the situation where we know the probability that each information 𝑖 is in the cache. 

As the internet provider sometimes refresh the bloom filter to an empty array, the probability could be 

predicted from the caches before the refreshes. We denote the probability of having 𝑖 in the cache as 𝑃𝑖. 

 With different probability, the number of a[j] we will set to true for different information 𝑖 

is going to be different. Assume that we set 𝑝𝑖 bits for an information 𝑖 and the set of information in the 

cache is 𝑆. The number of events we set some random a[j] to true is ∑ 𝑝𝑖𝑖∈𝑆 . The probability that an 

arbitrary a[j] is not set during those events is (1 −
1

𝑚
)

∑ 𝑝𝑖𝑖∈𝑆  
. The authors of [2] have the following 

theorem: 

Theorem 2: The probability of false positive is minimized, if the probability that a[j]=true is 0.5. 

Because of that, to minimize the probability of false positive, we want to have (1 −
1

𝑚
)

∑ 𝑝𝑖𝑖∈𝑆  
=

0.5. That is (∑ 𝑝𝑖𝑖∈𝑆 ) ⋅ ln (1 −
1

𝑚
) = ln 0.5. As we know that 1 − 𝑥 is very close to 𝑒−𝑥 for a very small 

positive real number 𝑥, we have 1 −
1

𝑚
≈ 𝑒−

1

𝑚. Then,  

(∑ 𝑝𝑖𝑖∈𝑆 ) ⋅ ln (1 −
1

𝑚
) ≈ (∑ 𝑝𝑖𝑖∈𝑆 ) ⋅ ln (𝑒−

1

𝑚) = (∑ 𝑝𝑖𝑖∈𝑆 ) (−
1

𝑚
) = ln 0.5. 



If we negate both sides of the equation, we have 

1

𝑚
∑ 𝑝𝑖

𝑖∈𝑆

= − ln 0.5 = ln 2. 

Because of the derivation, we want to have ∑ 𝑝𝑖𝑖∈𝑆 = 𝑚 ⋅ ln 2. 

 When we decide the value of 𝑝𝑖 for each information, it is just a design step. We have not yet 

got an information in the cache, and we do not know what 𝑆 is. Because of that, we cannot explicitly 

calculate the value of  ∑ 𝑝𝑖𝑖∈𝑆 . However, because we know that the probability of having 𝑖 ∈ 𝑆 is 𝑃𝑖, 

we can estimate the value of ∑ 𝑝𝑖𝑖∈𝑆  by ∑ 𝑃𝑖 ⋅ 𝑝𝑖𝑖 . After a long discussion, we want to have the following 

equation. 

∑ 𝑃𝑖 ⋅ 𝑝𝑖

𝑖

= 𝑚 ⋅ ln 2. 

 Now, let us consider the probability of having false positive. Recall that, for each 𝑗 , the 

probability of having  a[j]=true is 0.5. Because, for an information 𝑖 not in the cache, we have to 

check 𝑝𝑖 bits, the probability of having all 𝑝𝑖 bits true is (0.5)𝑝𝑖  . When we assume that all information 

are inquired exactly one time, the expect number of false positive is ∑ (0.5)𝑝𝑖
𝑖 . Because we want to 

optimize the number of false positive, we have the following optimization model: 

Input:   For all information 𝑖, probability 𝑃𝑖 (probability that we have 𝑖 in 𝑆) 

   positive integer 𝑚 (cache size) 

Output:   For all information 𝑖, positive integer 𝑝𝑖  

                                             (number of random bits set to true when 𝑖 arrives to cache) 

Constraint:  ∑ 𝑃𝑖 ⋅ 𝑝𝑖𝑖 = 𝑚 ⋅ ln 2. 

Objective Function: Minimize ∑ (0.5)𝑝𝑖
𝑖  

 Let us consider the objective function ∑ (0.5)𝑝𝑖
𝑖 . We usually have a problem when the function 

is exponential of output, so we need something easier. Assume that the number of random bits set to 

true when a particular information, 𝑝𝑖, is not more than 3. Define 3 new variables 𝑝𝑖
(1)

, 𝑝𝑖
(2)

, and 𝑝𝑖
(3)

 

as follows: 

𝑝𝑖
(𝑗)

= {
0        if 𝑝𝑖 < 𝑗 
1     otherwise.

 

By some calculation, when 𝑁 is the number of possible information, we have 

∑(0.5)𝑝𝑖

𝑖

= ∑ (1 − 0.5 ⋅ 𝑝𝑖
(1)

− 0.25 ⋅ 𝑝𝑖
(2)

− 0.125 ⋅ 𝑝𝑖
(3)

)

𝑖

= 𝑁 − ∑ 0.5 ⋅ 𝑝𝑖
(1)

𝑖

− ∑ 0.25 ⋅ 𝑝𝑖
(2)

𝑖

− ∑ 0.125 ⋅ 𝑝𝑖
(3)

𝑖

. 

As 𝑁 does not depend on the output, minimizing (𝑁 − ∑ 0.5 ⋅ 𝑝𝑖
(1)

𝑖 − ∑ 0.25 ⋅ 𝑝𝑖
(2)

𝑖 − ∑ 0.125 ⋅ 𝑝𝑖
(3)

𝑖 ) 

is equivalent to minimizing  (− ∑ 0.5 ⋅ 𝑝𝑖
(1)

𝑖 − ∑ 0.25 ⋅ 𝑝𝑖
(2)

𝑖 − ∑ 0.125 ⋅ 𝑝𝑖
(3)

𝑖 ). Also, as we know that 

minimizing – 𝑥 is equivalent to maximizing 𝑥, what we want to do is maximizing  (∑ 0.5 ⋅ 𝑝𝑖
(1)

𝑖 +

∑ 0.25 ⋅ 𝑝𝑖
(2)

𝑖 + ∑ 0.125 ⋅ 𝑝𝑖
(3)

𝑖 ). 

  



Let 𝑤𝑖
(𝑗)

= 𝑃𝑖 for all 𝑖 and 𝑗, and let 𝑄 = {𝑝𝑖
(𝑗)

: 𝑝𝑖
(𝑗)

= 1}. Because 𝑝𝑖 = 𝑝𝑖
(1)

+ 𝑝𝑖
(2)

+ 𝑝𝑖
(3)

, 

we have  

∑ 𝑃𝑖 ⋅ 𝑝𝑖

𝑖

= ∑ 𝑃𝑖 ⋅ (𝑝𝑖
(1)

+ 𝑝𝑖
(2)

+ 𝑝𝑖
(3)

)

𝑖

= ∑ (𝑃𝑖 ⋅ 𝑝𝑖
(1)

+ 𝑃𝑖 ⋅ 𝑝𝑖
(2)

+ 𝑃𝑖 ⋅ 𝑝𝑖
(3)

)

𝑖

= ∑ (𝑃𝑖 ⋅ 𝑝𝑖
(1)

+ 𝑃𝑖 ⋅ 𝑝𝑖
(2)

+ 𝑃𝑖 ⋅ 𝑝𝑖
(3)

)

𝑖

= ∑ (𝑤𝑖
(1)

⋅ 𝑝𝑖
(1)

+ 𝑤𝑖
(2)

⋅ 𝑝𝑖
(2)

+ 𝑤𝑖
(3)

⋅ 𝑝𝑖
(3)

)

𝑖

= ∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

𝑖,𝑗

= ∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄

. 

Let ℎ𝑖
(1)

= 0.5, ℎ𝑖
(2)

= 0.25, ℎ𝑖
(3)

= 0.125 for all 𝑖. We have  

(∑ 0.5 ⋅ 𝑝𝑖
(1)

𝑖

+ ∑ 0.25 ⋅ 𝑝𝑖
(2)

𝑖

+ ∑ 0.125 ⋅ 𝑝𝑖
(3)

𝑖

) = ∑ (ℎ𝑖
(1)

⋅ 𝑝𝑖
(1)

+ ℎ𝑖
(2)

⋅ 𝑝𝑖
(2)

+ ℎ𝑖
(3)

⋅ 𝑝𝑖
(3)

)

𝑖

= ∑ ℎ𝑖
(𝑗)

𝑝𝑖
(𝑗)

𝑖,𝑗

= ∑ ℎ𝑖
(𝑗)

𝑝
𝑖
(𝑗)

∈𝑄

. 

 Let 𝑊 = 𝑚 ⋅ ln 2. We will have the following optimization model: 

Input:  Positive integer 𝑁 (number of possible information) 

 Positive real numbers 𝑤𝑖
(𝑗)

 for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3 

 Positive real number 𝑊  

             Positive real number hi
(j)

 for 1 ≤ i ≤ N and 1 ≤ j ≤ 3 

 Assumption: 
h1

w1
≥

h2

w2
≥ ⋯ ≥

hn

wn
 

Output:   Set 𝑄 ⊆ {𝑝𝑖
(𝑗)

: 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3}  

Constraint:  ∑ 𝑤𝑖
(𝑗)

𝑝
𝑖
(𝑗)

∈𝑄
= 𝑊  

Objective Function: Maximize ∑ ℎ𝑖
(𝑗)

𝑝
𝑖
(𝑗)

∈𝑄
  

In this paragraph, we will argue that it does not mater changing the constraint to ∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
≤ 𝑊. 

We want to maximize ∑ ℎ𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
, so we want to have elements in 𝑄 as much as possible. If 

∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
< 𝑊, we may add more elements to 𝑄 to have a larger value of ∑ ℎ𝑖

(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
. Even we 

have the constraint ∑ 𝑤𝑖
(𝑗)

𝑝
𝑖
(𝑗)

∈𝑄
≤ 𝑊, it is very unlikely that we have ∑ 𝑤𝑖

(𝑗)

𝑝
𝑖
(𝑗)

∈𝑄
< 𝑊. We are 

likely to have ∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
= 𝑊 anyway. Thus, it does not matter changing ∑ 𝑤𝑖

(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
= 𝑊 to 

∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
≤ 𝑊. 

 By the previous paragraph, we will have the following optimization model. 

Input:  Positive integer 𝑁 (number of possible information) 

 Positive real numbers 𝑤𝑖
(𝑗)

 for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3 

 Positive real number 𝑊  



             Positive real number hi
(j)

 for 1 ≤ i ≤ N and 1 ≤ j ≤ 3 

 Assumption: 
h1

w1
≥

h2

w2
≥ ⋯ ≥

hn

wn
 

Output:   Set 𝑄 ⊆ {𝑝𝑖
(𝑗)

: 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3}  

Constraint:  ∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
≤ 𝑊  

Objective Function: Maximize ∑ ℎ𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑄
  

The optimization model is exactly same as the knapsack problem. We can use the 0.5-approximation 

algorithm for the knapsack problem to solve the optimization model. We can calculate all inputs of 

the optimization models from the properties of the Bloom filter, and receive the best number of bits 

for each information 𝑖 from the output of the models. 

Exercises 

Consider the following situation. 

All-you-can-eat strawberry farms become much more popular, because 

many students from this course decided to go there. The farm owners are 

very happy about that. However, without the assumption that customers 

cannot leave a strawberry partly eaten, there are a lot of partly-eaten 

strawberries when they leave. After heavily discussed, the owner decided to 

charge their customers for the partly-eaten strawberry. The charge will 

decrease the happiness that the customer can have from those partly-eaten 

strawberry. Suppose that the happiness from the remaining part of the 

partly-eaten strawberry (if eaten) is 𝐻. The charge will decrease the 

happiness by 𝑐 ⋅ 𝐻, when 𝑐 ≥ 0 is an integer given as an input. 

 

In this problem, we want to eat strawberry in a way to maximize our 

happiness after being charged.  

 

Question 1: State inputs of this problem by a mathematical formulation.  

Question 2: State outputs of this problem by a mathematical formulation. 

Question 3: State constraints of this problem by a mathematical formulation. 

Question 4: State objective functions of this problem by a mathematical formulation. 

Question 5: Write a program for solving knapsack problem based on the fact that an efficient 

algorithm for solving the optimization model in Problems 1.1 – 1.4 is given in a library. 

[AnswerOf1_2] YourOptimizationModel([AnswerOf1_1]); 

Sets knapsack(int n, int W, int[] happiness, int[] weight){ 

     //write your code for knapsack here 

}  

Question 6: Give an example for your optimization model such that there is some partly-eaten 

strawberry in all optimal solutions.  

Question 7: Suppose that there is two strawberries. The first strawberry weights 1.9998 gram, and your 

happiness from eating the strawberry is 1.9999. The second strawberry weights 2 grams, and your 



happiness from eating the strawberry is 2. The charging parameter 𝑐 is 20, and you cannot each more 

than 2 grams of strawberries. 

What is the optimal solution and optimal value for your optimization model in this situation? 

From the next question, Problem A referred to the knapsack problem for an impolite customer, where 

it is possible to eat a part of strawberries without receiving any fine. 

Question 8: What is an optimal solution of Problem A when the input is as given in Question 7?  

Question 9: Let us consider the solution in Question 8 in the term of our optimization model. What is 

the objective value of the solution for our optimization model?  

Question 10: From your answer in Question 9, discuss why a 0.9-approximation algorithm for Problem 

A may not be an approximation algorithm for your optimization model. 

Question 11: For any specific input and output, discuss why the objective value for Problem A is no 

smaller than the objective value for your optimization model. 

Question 12: For any specific input, discuss why the optimal value for Problem A is no smaller than the 

objective value for your optimization model. 

From the next question, Problem B referred to the knapsack problem for a polite customer, where it is 

not possible to eat a part of strawberries. 

Question 13: For a specific output of Problem B, discuss why the objective value for Problem B is equal 

to the objective value for your optimization model. 

Question 14: In this lecture note, we discussed about a 0.5-approximation algorithm for Problem B. We 

proved that the happiness obtained from the algorithm is at least half of the happiness obtained from 

Problem A’s optimal solution. 

Question 15: Discuss why the 0.5-approximation algorithm for Problem B is also a 0.5-approximation 

algorithm for your optimization model. 

In our discussion on the adaptive Bloom filter, for element 𝑖  that is in the cache 𝑆  with 

probability 𝑃𝑖, we randomly set 𝑘𝑖 cells of Hash table to 1. To minimize the probability of having false 

positive, we optimize the following optimization problem. 

Input:   Positive integer 𝑁 (number of possible information) 

    Positive real numbers 𝑤𝑖
(𝑗)

= 𝑃𝑖 for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3  

   Positive real number 𝑊 = 𝑚 ⋅ ln 2, when 𝑚 is the Hash table size 

    Positive real number ℎ𝑖
(1)

= 0.5, ℎ𝑖
(2)

= 0.25, ℎ𝑖
(3)

= 0.125 for 1 ≤ 𝑖 ≤ 𝑁 

Output:   𝑆 ⊆ {𝑝𝑖
(𝑗)

: 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3} 

    (Elements 𝑖 will trigger at least 𝑗 bits when 𝑝𝑖
(𝑗)

= 1.) 

Constraint:  ∑ 𝑤𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑆
≤ 𝑊 

Objective Function: Maximize ∑ ℎ𝑖
(𝑗)

𝑝𝑖
(𝑗)

∈𝑆
 

We stop our discussion here, but there is still a lot of issues to consider. When 𝑝𝑖
(2)

= 0 and 

𝑝𝑖
(3)

= 1, we will not be able to find an appropriate value for 𝑘𝑖. The output 𝑝𝑖
(2)

= 0 will be violated 



if 𝑘𝑖 ≥ 2, but 𝑝𝑖
(3)

= 1 will be violated when 𝑘𝑖 < 2. In the next question, we will show that the 

situation will not happen if we use the greedy algorithm for the knapsack problem. 

Question 16: Discuss why, when we use the 0.5-approximation algorithm for the knapsack problem to 

solve the above optimization model, we will have 𝑝𝑖
(𝑗)

= 1 only if 𝑝𝑖

(𝑗′)
= 1 for all 𝑗′ < 𝑗. 

 Another issue from the above optimization model is: we set the maximum value of 𝑘𝑖 is no 

more than 3 in the above optimization model. In reality, we might have 𝑘𝑖 much larger than 3, and what 

we have from the optimization model might be far from optimal. From the next question, we will show 

that assuming 𝑘𝑖 ≤ 3 is not that bad idea.  

 Consider the second optimization model, which have the same input, constraint, and objective 

function, but the following output: 

Output:   𝑆 ⊆ {𝑝𝑖
(𝑗)

: 1 ≤ 𝑖 ≤ 𝑁 and 𝑗 ≥ 1} 

We will call the first problem as 𝐵𝑙𝑜𝑜𝑚3 and the second optimization problem as 𝐵𝑙𝑜𝑜𝑚∞. 

Question 17: Suppose that 𝑆∗  is an optimal solution of 𝐵𝑙𝑜𝑜𝑚∞ , and 𝑆′ = {𝑝𝑖
(𝑗)

∈ 𝑆∗: 1 ≤ 𝑖 ≤

𝑁 and 1 ≤ 𝑗 ≤ 3}. Discuss why the objective value of 𝑆′ is no larger than the optimal value of 𝐵𝑙𝑜𝑜𝑚3. 

Question 18: Discuss why the objective value of 𝑆∗ is no larger than 8/7 times of the objective value of 

𝑆′. 

Question 19: Discuss why the optimal value of 𝐵𝑙𝑜𝑜𝑚3 is no smaller than 7/8 times of the optimal 

value of 𝐵𝑙𝑜𝑜𝑚∞. 

Question 20: Discuss why a 0.5-approxiation algorithm for 𝐵𝑙𝑜𝑜𝑚3 is a 7/16-approximation algorithm 

for 𝐵𝑙𝑜𝑜𝑚∞. 

Question 21: Devise a 0.5-approximation algorithm for 𝐵𝑙𝑜𝑜𝑚∞ based on the greedy algorithm for the 

Knapsack problem. 
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